
KILP Arendusjuhend

Arenduses kasutatav tarkvara*
• Java 17 JDK
• Spring Boot 2.7.7
• PostgreSQL 13 + PostGIS
• Hibernate 5.6
• Spring Framework 5.3
• React 17

o GUI (Javascript)
• React 18

o tactical-ui (Typescript)
o aviation-dashboard(Typescript)

• Lombok 1.18
• H2 integratsioonitestides 1.4
• Caffeine Cache 2.9
• Junit 5
• Mockito 4.5
• REST Assured 2.9
• Liquibase 4.9.0

*See info siin võib mingitel hetkedel olla mitte-ajakohane

Rakenduse arhitektuur
• Rakenduste kood töötab serveris Java virtuaalmasinal, mille versioon on vähemalt 17.0
• Rakenduse konfigureerimisparameetrid on muudetavad väljaspool rakendust
• Rakendus toimib edasi võrgukatkestuse puhul
• Ühenduvust väliste liidestega saab kontrollida JMX vahenditega

Rakendus koosneb eraldiseisvatest valdkonnapõhistest moodulitest, mis on paigaldatavad
iseseisvalt kas spring-boot rakendusena Maven-i pluginaga või Tomcati war-
na. Rakenduse arendamisel järgitakse microteenuste arhitektuuri, mis võimaldab erinevatel
meeskondadel rakendusi üksteisest sõltumatult arendada ja paigaldada.
Andmebaas on arendusfaasis kõikidele üks, asudes keskses serveris, millele on kõikidel
arendajatel üle JDBC ligipääs. Arendajal on võimalik ka arendusmasina-lokaalset andmebaasi
kasutada (H2 või PostgreSQL). Loodav lähtekood asub Git-is.

Rakenduse struktuur
Rakendus koosneb eraldiseisvatest moodulitest, mis suhtlevad omavahel üle REST-i.
Mooduliteks jaotus on tehtud vastavalt valdkondadele ning moodulisisene struktuur on
kirjeldatud järgnevalt:

Olemasolevad tehnilised lahendused ja joonised võivad kuuluda arenduse ja/või analüüsi
käigus muutmisele. Kõik sisseviidavad muudatused peavad olema eelnevalt Tellijaga
kooskõlastatud.

projektA
 src
 main
 resources
 java
 ee.smit.kilp.{rakenduse nimi}.{mooduli nimi}
 boot
 tests
 controllers
 services
 persistence
 test
 resources
 java

boot - spring-boot rakenduse käivitamiseks vajalik kood ja spring configuration klassid
tests - integratsioonitestid kogu rakenduse testimiseks
controllers - rest-i kontrollerid
services - teenused, mida kontrollerite kaudu välja kutsutakse
persistence - andmebaasiga suhtluseks vajalikud komponendid

Rakenduse konfiguratsiooniparameetrid
Rakenduse konfiguratsioon asub failis application.yml ning loetakse sisse rakenduse
ülestulekul. Konfiguratsioon asub väljaspool rakendust ning parameetrid on muudetavad ilma
rakendust restartimata, kasutades selleks spring-cloud-i funktsionaalsust.

Moodulitevaheline suhtlus
KILP omavaheliste moodulite suhtlus toimub üle:

• REST
• SSE
• RabbitMQ

Kõik moodulid, mis omavad REST liidest, väljastavad ka mooduli urli alt enda REST-i liidese
spetsifikatsiooni, mida saab liidestuva mooduli arendaja kasutada liidestuse loomiseks.

Suhtlus KILP väliste süsteemidega
KILP väliste teiste andmekogude ja süsteemidega suheldakse kasutades:

• SOAP üle XTEE

• REST üle XTEE
• REST

Suhtlus andmebaasiga
Andmebaasiga suhtlusel kasutatakse jdbc datasource, mis on poolitavad. CRUD operatsioonide
puhul kasutatakse Spring Data repository-sid, mis injectitakse vastavasse teenusklassi.
Andmebaasi mudeli klassid luuakse andmebaasi pealt Hibernatetoolsi kasutades.
Teenusloogika andmebaasi ei kirjutata ning loodav SQL funktsionaalsus püütakse hoida
maksimaalselt andmebaasist sõltumatuna, sest see võimaldaks testimist käivitada H2
andmebaasi kasutades.

Puhverdamine
Puhverdamiseks kasutatakse Caffeine Cache'i.

Transaktsionaalsus
Transaktsionaalsust rakendatakse annotatsioonipõhiselt teenuskihis.

Logimine
Rakenduses kasutatakse slf4j API-t ning logbacki implementatsiooni. Loggeri lisamiseks klassile
kasutatakse @slf4j annotatsiooni projektist Lombok. Logifail kirjutatakse failisüsteemi maha
ning on masintöödeldav.
Iga päringu kohta tehakse vastavasisuline audit logi kirje.

Kasutajaliides
Kasutajaliides realiseeritakse eraldi javascripti/typescripti rakendusena, mis suhtleb serveris
asuva teenuskihiga üle REST-i.

Testimine
Rakenduse testimiseks kasutatakse nii integratiooniteste kui ka unitteste. Integratsioonitestide
jaoks luuakse moodulis alammoodul, kus asub testi käivitamiseks vajalik konfiguratsioon ning
andmete eeltäitmine. Unittestid asuvad testitava koodiga samas moodulis.

Rakenduse monitoorimine
Monitoorimine toimub JMX-i vahenditega.

Rakenduse dokumentatsioon
Koodi kirjutamisel rakendatakse Robert C. Martin raamatus “Clean Code” kirjeldatud
metodoloogiat ehk koodi kirjutatakse maksimaalselt isedokumenteeruvana. Vajadusel lisatakse
kommentaarid JavaDoc-ina.

Koodi kvaliteet
Koodi kvaliteedi formaalseks hindamiseks kasutatakse Sonar-it:

• Sonar-i hoiatused
• Automaattestidega kaetuse protsent (>=80%)

 Mitteformaalne kvaliteet:
• Pull-requestide peer review'd.
• Koodi loetavus, lihtsus ja mõistetavus.
• Andmete töötluse kiirus ja optimaalsus.

KILP skeemid

